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Abstract. For a projective plane Pn of order n, let X(Pn) denote the minimum number k, so that 
there is a coloring of the points of P~ in k colors such that no two distinct lines contain precisely 
the same number' of points of each color. Answering a question of A. Rosa, we show that for all 
sufficiently large n, 5 < X(Pn) < 8 for every projective plane P, of order n. 

1. Introduction 

Let P = Pn = (P, ~ )  be a projective plane of order  n, with a set of points  P and a 
set of  lines ~ .  As is well known,  P has n 2 + n + 1 points  and n 2 + n + 1 lines with 
n + 1 points  on every line. A g-colorin9 of P is a function f f rom P to the set 
{1, 2 . . . . .  X}, which m a y  also be viewed as the (ordered)x-par t i t ion  (P1, P2 . . . . .  Px) 
of  P defined by Pi = f - l ( i ) .  Let  C be a X-coloring of P, cor responding to the 
par t i t ion (1"1 . . . . .  Px)" For  a line L ~ ~e, we define the type tL. c of L (with respect to 
C) to be the following vector  of  length Z: tL, c = (IPxfqLI, I P z N L I , . . . , I P x N L I ) .  
Thus, tL.c is a vector  with nonnegat ive  integer coordinates  whose sum in ILl = 
n + 1. The coloring C is called legitimate if no two distinct lines have the same type. 
Finally, let X(P) denote  the min imum integer X, such that  there exists a legitimate 
g-coloring of P. A. Rosa  raised the p rob lem of s tudying the numbers  g(P) and 
observed that  X(P) > 4 for every projective plane of order  n > 5. Indeed, this follows 
f rom the fact that  the n u m b e r  of  vectors with X nonnegat ive  coordinates  whose sum 

i s n + l i s ( ~ + ~ )  S i n c e ( n + 3 )  n 2 - " 2 < + n + 1 for all n _> 5, it follows that  in any  

3-coloring of a projective plane of order  n > 5 there are two lines having the same 
type. Somewha t  surprisingly, the set {X(P)}, as P ranges over  all projective planes, 
is bounded.  In  fact, as shown in the next section, a ra ther  s t ra ightforward applica-  
t ion of the probabil is t ic  me thod  shows that  for all sufficiently large n, X(P,) < 10 
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for every projective plane of order n. In the present paper we study the numbers 
X(P.) for large n. We improve both the easy upper and lower bounds stated above 
and show that for all sufficiently large n 

5 ___ x (P . )  --- 8 

for every projective plane P, of order n. The upper bound is proved in section 2, 
and the lower bound in section 3. The final section 4 contains several generalizations 
and open problems. 

2. Eight Colors Suffice 

In this section we prove the following theorem. 

Theorem 2.1. For all sufficiently laroe n, 

x(P.) --- 8 

for every projective plane P, of order n. 

Throughout the section we assume, whenever it is needed, that n is sufficiently 
large. Let P = •, = (P, A °) be a projective plane of order n. We first show the easy 
proof that X(P) _< 10. A random X-colorin 9 C of P is a function f from P to {1, 2,... X}, 
where for each p ~ P, f(p) ~ {1, 2, . . . ,  X} is chosen, independently, according to a 
uniform distribution. Let us call a pair {L, L' } of two distinct lines of P bad (with 
respect to C) if tL, c = tL, c. One can easily check that for every fixed X and every 
fixed pair of lines {L,L'}, the probability that {L,L'} is bad (with respect to the ( ' )  random X-coloring C) is O ~ . Therefore, the expected number of bad pairs 

( ( n 2 + n + l )  1 )=O(n4-(x-1)/2).Inparticular, f o rx=lOtheexpec t ed  is O 2 " ~  

number of bad pairs, is smaller than 1 and hence there is a 10-coloring with no bad 
pairs which is, by definition, a legitimate coloring. Thus X(P) _< 10. Moreover, the 
proof actually shows that almost all 10-colorings of P are legitimate. Our objective 
is to improve the bound 10 to 8. As the details are somewhat complicated, let us 
first sketch the idea in the proof of this improvement. Our objective is to show that 
with positive probability a random 8-coloring of P is legitimate. However, unlike 
in the previous case, here the probability that it is indeed legitimate is extremely 
small. To obtain the required estimate for the probability that a random 8-coloring 
is legitimate, we apply the Lov~isz Local Lemma. This is a tool that enables one to 
conclude that with positive probability the complements of many events happen 
simultaneously, provided each of them is mutually independent of almost all the 

( ) others. The events we would like to consider here are all the nz + n + 1 2 events 

that a fixed pair of lines is bad. However, here no reasonable condition on mutual 
independence is satisfied, and.thus we have to be a little trickier. This is done by 
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first considering a random coloring of most, but not all, the points, and then by 
applying the Local Lemma to the rest of the coloring. 

We now present the proof in detail, starting with a few lemmas. 

Lemma 2.2 (See also [5] for a similar statement) There exists a subset S c P of the 
set of points of Pn = (P, 58), such that for every L • 58 

logn < ISf3Zl < 201ogn. (2.1) 

Remark 2.3. All logarithms here and throughout the paper are in the natural base 
e. The constant 20 can be easily reduced. We make no attempts to optimize the 
constants here and in the following proof. 

Proof of Lemma 2.2. Let us pick each point p • P independently, with probability 

10 log n. Let S be the (random) set of all the points picked. For each line L • 58, 
n + l  

let AL be the event that inequality (2.1) is violated for L. Clearly, [SNLI is 
a Binomial random variable with expectation 101ogn and standard deviation ( 10logn  

10 log 1 n + 1 J < x / ~  log n. Hence, by the standard estimates for Bino- 

mial distributions (see, e.g., [2], p. 11) for every L • 58 

Pr(AL) < e-(81/2O)log n < 1/n 4. 

Therefore, the expected number of lines L that violate {2.1) is smaller than 
(n 2 + n + 1)/n 4 < 1 and thus there is a set S for which (2.1) holds for every L • 58. 
This completes the proof of the lemma. 

Let S c P satisfy the assertions of Lemma 2.2. Put F = P \ S  and let f :  F --* 
{1,2 . . . . .  8} be a random coloring of F by 8 colors, where for each p • F, f ( p ) •  
{1, 2 . . . . .  8} is chosen independently, according to a uniform distribution. Thus f is 
a partial coloring of P. For each line L • 58, define the type tL,: of L (with respect 
to the partial coloring f ) b y  tL,: = (l f - l (1 )N LI . . . . .  [f-1(8) fq LI). For two vectors 
_x = (xx,. . . ,  xs) and _y = (Yl . . . . .  Ys) define the distance d(_x,_y) to be the / :d is tance  

8 

between _x and _y, i.e., d(_x,_y) = ~ [xi - y,[. Let us call a pair {L,L'} of distinct 
i= l  

lines dangerous if d(tL,:, tL,,:) < 40log n. Notice that f assigns colors to all but at 
most 40 log n points of L U L'. Thus, if {L, L'} is not a dangerous pair, then in any 
extension of f to a coloring C of all points of P the types tL, c and tL,,c will be 
different, i.e., {L, L'} will not be a bad pair. Therefore, when trying to extend f to 
a legitimate coloring of P, our only concern is to avoid making any dangerous pair 
into a bad one. In order to show that this can be done, we first study the structure 
of the dangerous pairs. We need the following simple, somewhat technical, lemma. 

Lemma 2.4. Let L be a line of P, and let T ~_ L be a set of k points of L. Let 
_t = ( t l , . . . , t8)  be an arbitrary vector with nonnegative integer coordinates. Then 
for any given function g: T ~  {1,2 . . . . .  8} and for the random coloring f :  F 
{1,2 . . . . .  8}: 
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Pr(tL,: = _0f(P) = g(P) for all p E T) 

(L Jt rail m - k  m - k + l  m - k + 7  
- - 8 - - '  8 . . . . .  - 8 

< 8,._ k , (2.2) 

where m = IL N FJ. In particular, if k < x/~, the above conditional probability is 
smaller than lO0/n 7/u. 

Proof. For 1 < i < 8, put si = Ig-*(i)l. Knowing that f(p) = g(p) for all p ~ T, the 
type tL,: is equal to _t if and only if the number of points in (L fl F) \  T colored i is 
precisely t~ - s~. There are 8 "-k equally likely possible colorings of (L f) F) \  T and 

the number of those making tL,:= t is ( m - k ) .Therefore ,  
-- t l  - - s l , t  2 --  S 2 , . . . , t  8 - s  8 

the left hand side of(2.2) is equal to the ratio between the last multinomial coefficient 
and 8 m-k. Since this multinomial coefficient, for given m and k, attains its maximum 
when the numbers t~ - s~ are as equal as possible, inequality (2.2) follows. The fact 
that by (2.1) m > n + 1 - 20log n, together with the standard estimates for multi- 
nomial coefficients obtained from Stirling's Formula (see, e.g., [2], p. 4), show that 
for all sufficiently large n the conditional probability considered is smaller than 
lO0/n 7/2, provided k < x//n. [] 

Corollary 2.5. Let Lx and L 2 be two distinct lines o fP  = (P, A a) and let T c P be an 
arbitrary set of points of P satisfying [L 2 A T[ < x/~. Then, given any information 
on the coloring of the points in T, the conditional probability that {Lx,L2} is a 

(10010g n) a. 100 (log n) 9 
dangerous pair (with respect to f )  is smaller than nW 2 < nT/------y-- 

Proof For every possible coloring of L~ U T (consistent with the given information 
on the coloring of T), and for every fixed type vector t = (t 1 . . . . .  t a) whose distance 
from tLl.: is at most 40 log n, the conditional probability that tL2 ,: = _t is, by Lemma 

2.4, smaller than 100/n 7/2. As there are less than (10010gn) a < (1°:0~)9-- vectors _t 

of distance at most 40 log n from each such possible tf 1,:, the desired result follows. 
[] 

Lemma 2.6. The probability that there are three distinct lines L, L' and L" such that 
both pairs {L, L'} and {L, L"} are dangerous (with respect to the partial coloring f )  
is smaller than (log n)l a /n. 

Proof Fix a line L and two other distinct lines L' and L". By Corollary 2.5, the 
probability that (L, L'} is a dangerous pair is smaller than (log n)a/n 7/2. By another 
application of Corollary 2.5 (with L1 = L, L 2 = L" ,  T = L tA L') the conditional 
probability that {L, L"} is a dangerous pair, given that {L, L'} is a dangerous pair, 
is smaller than (log n)9/n 7/2. Thus, the probability that both pairs (L, L' } and (L, L" } 
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are danger°us is smaller than (l°gn)~S/nT" There are (n2 + n + l ) (  n2 + n < n6 

choices for the line L and the two other lines L' and L". Thus, the expected number 
of pairs of the form (L, (L',L"}), where L, L' and L" are three distinct lines and 
(L, L'}, (L, L"} are dangerous pairs is smaller than (log n)lS/n. Hence, the prob- 
ability that this number is not zero (i.e., that it is at least 1) is smaller than (log n)IS/n. 

[] 

Lemma 2.7. The probability that there is a point p ~ P and ten distinct lines 
{L1,L2 . . . . .  Ls,L'~,L'2 . . . . .  L'5} such that p ~ L 1NL 2 N- . .NL  s and {L~,L'I} is a 
dangerous pair for all 1 <_ i <_ 5 is smaller than (log n)4S/x/~. 

Proof. Fix a point p ~ P and ten distinct lines L 1 . . . . .  Ls, L'I . . . . .  L~ such that 
p ~ L1 N L 2 n " "  n L 5. By Corollary 2.5, the probability that {L 1, L'~ } is a dangerous 
pair is smaller than (log n)9/n 7/2. Also, for every 1 _< i _< 4, Corollary 2.5 implies 
that the conditional probability that {Li+~, L'i+~ } is a dangerous pair, given that 

, (log n) 9 
(L1, L~ } . . . . .  (L,, L'i} are all dangerous pairs, is smaller than n--n--~-. It follows that 

the probability that all 5 pairs {L~, L'~)are dangerous is smaller than (log n)gS/n 3 s/2. 
The number of choices for p, L1 . . . . .  L5 and L'~ . . . . .  L~ with p E L~ N ' "  N L5 is 

smaller than (n2 + n + 1).(n + 1)(  5 n2 + n + 1) 5 < n ~7. Thus, the probability that 

there are such p, L~ . . . . .  L 5 and L'~ . . . . .  L;  with all 5 pairs {Li, L~} dangerous is 

smaller than n 17. (log n) 45 n35/2 -(logn)45/x/~. [] 

For a point p of P and a pair (L,L'} of lines of P, we say that p lies in (L,L')  
if p ~ L U L'. An immediate consequence of Lemma 2.6 and Lemma 2.7 is the 
following. 

Proposition 2.8. The probability that no point of Pn lies in more than 4 dangerous 

pairs is at least 1 (l°gn)18 (l°gn)45. In particular, there is an 8-coloring f of 
n 

F = P \ S  in which no point belongs to more than 4 dangerous pairs. (In fact, almost 
all 8-colorings have this property, for sufficiently large n.) [] 

Let f :  F -~ { 1, 2 . . . . .  8} be a partial 8-coloring of P, satisfying the assertion of 
the last proposition. To complete the proof of Theorem 2.1 we show that f can be 
extended to a legitimate 8-coloring C of P. Let C be a random extension of f, i.e., 
choose the color of each point p e S independently, in {1, 2 . . . .  ,8}, according to a 
uniform distribution. Recall that by (2.1) S contains at least log n points of each line 
L, so there is still a considerable amount of freedom in determining the type tL, c of 
each line. By definition, C is legitimate if and only if there are no bad pairs of lines 
(with respect to the coloring C). Recall that the only pairs that may become bad 
(with respect to C) are those which are dangerous with respect to f. Our objective 
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is to show that with positive (though exponentially small) probability, no dangerous 
pair becomes bad. To do so, we apply the Lovfisz Local Lemma proved in [4] (see 
also, e.g., [6]), which is the following: 

1.emma 2.9 (Lovfisz Local Lemma: Symmetric case [4]). Let A x,  A 2  . . . .  , An be events 
in a probability space. Suppose that, for all i, Pr(A~) < q and that each event A s is 
mutually independent of  all but at most b of  the other events. I f  eq(b + 1) < 1 then 

P r ( A  .~)  > O;i.e.,withpositiveprobabilitynoA, 

For every dangerous pair {L1, L2 } (with respect to the fixed partial coloring f 
satisfying the assertion of Proposition 2.8 we chose), let ALl,L2 be the event that the 
pair {Li,L2} is bad with respect to the random extension C off .  Let Si = S fq Li ,  
$2 = S f3 L2 be the points of L1 and L2, respectively, that receive their new colors 
during the random choice of C. By our choice of S (see inequality (2.1)) both [$11 
and IS21 are between log n and 20 log n. Therefore, one can easily check that 

100 
Pr(A{r.,,L2}) < (log n)7/2. (2.3) 

Indeed, for every given coloring of L2, the conditional probability that L1 will have 
the same type can be bounded, as in the proof of Lemma 2.4, by an expression of ( ° )  
the form m~,m2,. . . ,m8 , where m = IS1\$2[ > logn - 1, and this expression is 

8 m 
smaller than 100/(log n) 7/2. 

We claim that the event A{L~.L~ } is mutually independent of all the events 
A{L,,L,, } with 

(S1U $2) f3(L' U L " ) =  ~. (2.4) 

This is because the coloring f is already fixed and the only random process 
considered is its extension to C. Thus, the only colors that determine the event 
A{zI,L2} are those assigned to the points of $1 U $2, and no information on the 
coloring of L' and L" is relevant to the the choice of these colors, provided (2.4) 
holds. Since by Proposition 2.8 no point belongs to more than 4 dangerous pairs 
and, since [S~ t_J $21 < 80 log n, it follows that the number of dangerous pairs {L', L" } 
(besides {L~, L 2 })that  violate (2.4) does not exceed IS1 U $21.3 < 240 log n. Com- 
bining this with (2.3) and Lemma 2.9 (with q = lO0/(logn) 7/2, b = 2401ogn) we 
conclude that with positive probability no event A{L.r..} occurs. In particular, there 
is at least one extension C of the partial coloring f which is an 8-coloring of P with 
no bad pairs, Thus Z(Pn) < 8, completing the proof of Theorem 2.1. [] 

3. Four Colours do not Suffice 

In this section we prove the following theorem. 



Legitimate Colorings of Projective Planes 101 

Theorem 3.1. For all sufficiently large n. 

x(P.) 5 

for every projective plane P. of order n. 

To prove this theorem we need the following simple but useful lemma. See also 
[1] and [3-1 for similar statements. 

Lemma 3.2. Let P = P. = (P, &t') be a projective plane of order n and let X ~_ P be an 
arbitrary set of points of P. Then 

( (. +1)Ix!)2 ( Ixt ) 
L ~  IZngl  ~ T n +  lJ =lSln 1 n 2 + n +  l " (3.1) 

Proof. Since every point of X belongs to precisely n + 1 lines we have: 

ILAX[  = (n + 1)lX[. 

Similarly, since every pair of points of X lie in a unique common line: 

L E . L a  

The above two inequalities enable us to compute any polynomial of the form 
E (~ILNX[ z+ ~lZnXl  +~)in terms of n and IXl. In particular, an easy 

L e , £  a 

computation gives equality (3.1). [] 

Remark. In the next section we present another proof of Lemma 3.2, which uses the 
eigenvalues of the lines versus points incidence matrix of the projective plane P. 
Although that proof is (a little) more complicated than the one above, it has the 
advantage that it can be generalized to other, more complicated structures provided 
some information on the eigenvalues of their corresponding incidence matrices is 
available. 

In order to deduce Theorem 3.1 from Lemma 3.2, rather rough estimates suffice. 
We next present this proof. Afterwards, we describe briefly a more careful analysis 
which, although it does not enable us to improve the lower bound in Theorem 3.1 
to X(P,) > 6, it provides some interesting properties of any legitimate 5-coloring of 
P. for all sufficiently large n. We believe that in fact X(P,) > 6 for all sufficiently 
large n but at the moment we are unable to prove it. 

Proof of Theorem 3.1. Let C be an arbitrary 4-coloring of P = P, = (P, ~) ,  corre- 
sponding to the partition P = P1 U P2 LJ Pa U P4 of the points of P. For 1 < i < 4, 
put ti = IPiJ(n + 1)/(n 2 + n + 1). By Lemma 3.2, for each fixed i, 1 < i < 4, we have 

( " )  ([gfqP, l - t , )  2 = l P , l ' n  1 n 2 + n +  l- 
L e .oq ~ 

_ n2 + n + I n  IP~l(n 2 + n + 1 - IPi l )  < n(n2 +4n + 1) <n3. 
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Therefore, the number of lines L ~ &t, that satisfy IlL clei[ - ti[ > 3x//n is smaller 
than nZ/9. It follows that there are at least (n z + n + 1) - 3nZ/9 > n2/2 lines L for 
which 

IlL n e , I -  t,I _< 3x/n for all 1 _ i <  3. (3.2) 

We claim that there are at most (6x/~ + 1) a < 256n a/z possible type vectors tz, c = 
([L fl Pal . . . . .  [Lf-) i°4[) for lines L that satisfy (3.2). Indeed, by (3.2) there are at most 
6x/~ + 1 possibilities for each of the three quantities IL f3 el 1, [L fl e21 and [L f3/'31, 
and as the sum of the 4 coordinates of tL.c is precisely n + 1 these three quantities 
determine the fourth. As there are at least n2/2 lines L that satisfy (3.2), and the 
type of each of them belongs to a set of less than 250n 3/2 possible type vectors it 
follows that for sufficiently large n there are two distinct lines having the same type. 
(In fact, there are at least x/@500 lines having the same type.) In particular, C is not 
legitimate and ~(P,) > 5, as needed. [] 

In the rest of this section we briefly present a more careful analysis of colorings 
of projective planes using Lemma 3.2. Although this analysis does not suffice to 
improve the estimate in Theorem 3.1, it does supply some additional interesting 
information on colorings of projective planes. Let k be a fixed integer. Let P = P, = 
(P, 5e) be a projective plane of order n, where n > no(k)is  sufficiently large. Let C 
be an arbitrary k-coloring of P, corresponding to the partition (P~,Pz, . . .  , P  k) 
of P, and put _t = ( t l , t  2 . . . . .  tk), where t i = [P,l'(n + 1)/(n 2 -t- n + 1). For two 
k-dimensional vectors x_ = (x~ . . . .  ,Xk) and y = (Yx . . . . .  Yk), put II_x- y[I z = 

k - -  - -  

[ x i -  yi[ 2. Combining Lemma 3.2 with the convexity of the function z 2 we 
i=1 

obtain: 

HtL, c--_t[I 2 =  ~ [Pi['n 1 
L ~ , ~  i=1 

) 
n 2 + n + l  

n k 

'~n 2 + n + "'xjn n 2 + n + 1,2"i"c~ Ie, I 2 

,n + + + ,  + 1) = k - 1 + ,  + ,'" < 

- k k 

Suppose now, that Jg ~ Xa is a set of lines, and tL, c # tL',C for every two distinct 
lines L, L' ~ J¢. (In particular, if C is legitimate, this holds for J¢ = Le.) Inequality 
(3.3) provides an upper bound for ~ IItL,C--t_ll2< ~ IItL,c-- tll 2. On the 

L~,A[ L ~ . ~  

other hand, it is obvious that the quantity ~ [ItL, c -- _tll 2 is at least as big as the 
L ~ '  

sum ~ [l_xi -- _t[[ 2, where m = I~/[ and {_xi}i~ 1 are m distinct lattice points on the 
i=1 

hyperplane <_x,l> = n + 1 in ~k, chosen as close as possible to the point _t ~ ~k. 
(Here 1 is a k-dimensional vector of l's.) This set {xi }i"=1 is simply the set of all lattice 
points inside a ball centered at _t (in the hyperplane (_x, 1> = n + 1), with an 
appropriately chosen radius R, plus, if necessary, some of the points on the bound- 
ary of this ball. We thus need the following estimate. 
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Proposition 3.3. Let k be a fixed integer and let t e R k be a point on the hyperplane 
H = {_x: <_x, 1_> = n + 1}. Let Mk(g,t_) denote the sum ~ Ilx - t l l  2, where x_ ranges 
over all lattice points on the hyperplane H inside the ball of radius R centered at t_. 
Then, as R tends to infinity 

717 (k-1) /2  k -  1 
Mk(g,t_) = (1 + o(1)). R k+l 

+ i)  

~(k--1) /2  

Proof. The volume Br of a k - 1 dimensional ball of radius r is r k-l .  The 

volume of the basic paralMepipedon of the lattice of the hyperplane H is the 
following k by k determinant 

1 - 1  

0 1 

0 0 

det 

0 " ° "  

- 1  0 

1 - 1  

0 0" 

0 0 1 - 1  

1 1 1 1 

B _  
Thus the number of lattice points inside a ball of radius r in H is (1 + o(1)) ~ .  

Therefore 

i Mk(R,t)  = (1 + o(1)) =o r2 dr 

fr R ( k -  1)r k+l = (1 + o(1) )  : o  
~(k  - 1 )/2 I dr 

z¢ k-1)/2 k -  1 

This completes the proof of the proposition. []  

Proposition 3.3 and inequality (3.3) easily imply Theorem 3.1 (which we have 
already proved). Indeed, suppose the theorem is false, let C be a legitimate 4- 
coloring of Pn and define _t as above. Then the vectors {tL.c: L e ~ }  are n 2 + n + 1 
distinct lattice points on the hyperplane H = { <_x, 1> = n + 1} in ~4. Consequently 

IFtL, c -- _tl[ 2 is at least Ma(R,t), where R is the smallest radius of a 4 dimen- 
L e . ~  
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1 
sional ball containing n 2 -~- n --[- 1 lattice points from H. H e n c e  4/tR3"---~ ,-~ n 2 -b  

N/ ' 
n + 1 and thus g = D(n 2/a) and M4(R,t) = D(n 1°/3) > 4n(n2 + n + 1), contradict- 
ing inequality (3.3). 

A similar argument enables us to show that in any 5-coloring of P, there are 
many pairs of distinct lines whose type vectors are very close to each other. Let us 
call two type vectors tL, c and tz, c neighbours if either tL ,  c = tL,,C or tL, c can be 
obtained from tL,,c by changing the color of a single point of L' (i.e., by increasing 
one coordinate of t,.,,c by 1 and decreasing another coordinate by 1.) 

Claim 3.4. Let k be a fixed integer, and suppose t_ ~ ~k Let H be the hyperplane 
{_x: (_x, 1 )  = n + 1}. Let Y be a set of lattice points on H and suppose no two distinct 
vectors in Y are neighbours, and each y ~ Y lies inside the ball of of radius R centered 
at t_. Then, as R tends to infinity 

1 7[ ( k - l ) / 2  

IYI _<(1 + o ( 1 ) ) k x / ~ F ( k + _ ~ l ~ R  k-1. 

I.e., g does not contain more than a fraction of (1 + o(1)) of the lattice points of H 
k 

inside this ball. 

Proof. For each vector y = (Yi,-.-,Yk) E Y, define k vectors yl, y2, . . . ,  yk by 
Y~ = (Yx,Y2 . . . . .  Yi-I,Y~ +--l,y~+l,...,yk). Clearly all the k. I YI vectors {_yi:y ~ Y, 
1 _< i _< k} lie inside the ball of radius R + 1 centered at L and they all belong to 
the hyperplane/~ = {_x: (_x, l> = n + 2}. Furthermore, as Y contains no neigh- 
bours, all these k[ Y[ points are distinct. Therefore 

1 7[(k - 1 )/2 

kl YI < (1 + o(1))~/~ F ~ k ~  1 _ )  (R + 1) k-l, 

and the assertion of the claim follows. [] 

We conclude this section with the following proposition. 

Proposition 3.5. For all sufficiently large n, for every projective plane P = Pn = 
(P, ~ )  of order n and for every 5-coloring C of P there are at least n2/lO0 distinct 
pairs {L,L'} of lines of P such that tL, c and tL',C are neighbours. 

Proof. Suppose this is false and let C be a 5-coloring of P with less than n2/lO0 
neighbouring pairs. Let Jr' _ A ° be a set of lines obtained from A a by omitting one 
line from each such pair. Clearly I ~ l  > 0.99n2. By Claim 3.4, the number of vectors 

{tL, c: L e .~/} inside each ball oLradius r does not exceed (1 + o(1)) ~ - r  4. 

Therefore, proceeding as in the proof of Proposition 3.3, we conclude that if R is 
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defined by ~ R 4 = 0.99n 2 then for any vector t 

1 6rt 2 4 = (1 + o(1))R 6 lr----~z 
X (tz,c - -02  > (1 + o(1))~R ~ x/~.  ~ 15x/~. 

L e . / g  

These two equations give 

• "Y22X/10X/5n3~(1 +o(1))0.988n 3. (3.4) (tL,c - t_z) z >- (1 + o(1)).(0.99) / ~-n 
Le~g/  

In particular, this holds for the vector _t defined by the coloring C in the usual 
manner. However, by inequality (3.3) 

Y, IItL, c -_ t l l  2 -< 0.8n(n 2 + n + 1) = (1 + o(1))0.8.n 3. 
Le,A¢ 

This contradicts inequality (3.4) and completes the proof of the proposition. [] 

4. Concluding Remarks 

The main tool in the proof of Theorem 3.1 is Lemma 3.2. As mentioned in the 
remark following this lemma, the lemma and some more general staterrients can be 
proved using the eigenvalues of an appropriate incidence matrix. Let H = (V, E) be 
a k-uniform/-regular hypergraph with a set V of p vertices and a set E of q edges 
(p. l = q- k). The incidence matrix of n is the matrix A = A n = (aev)e ~e,v~ v defined 
by a~v = 1 if v e e and aev = 0 if v ¢ e. One can easily check that k" 1 is the maxi- 
mum eigenvalue of the symmetric matrix ArA, with a corresponding eigenvector 
(1, 1 . . . . .  1). Let 2 denote the second largest eigenvalue of ArA. By Rayleigh's 
principle, for any vector y = (Yv)~ v that satisfies ~ Yv = 0 the inequality 

v e g  

( A r A y ,  y)  <_ 2 E y2 (4.1) 
v e l  r 

holds. Let X _ V be an arbitrary set of vertices of H. Define a vector y = Yx = 

(Yv)~v b y  y o -  [XI if v e X  and y~ 1---Igl if v e X .  Clearly E Y~ = 
P P ~ v  

( P - - I X I ) ( - - ~ )  + I X I ( 1 -  ~ )  = 0. Therefore, by (4.1) 

(ArA-y 'y )<2~v~v  Y~ = 21XI (1 -- ~-~)" (4.2) 

However 

( A r A y ,  y )  = (Ay ,  A y )  = ~ lef)Xl" 1 - I X l  _ le \Xl  
eeE P 

= 2 l e n X I -  tXl • 
e e E  

Therefore, (4.2) implies 
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e~e(IeNXI-~[XI)2<2IXI(1 - IX])  (4.3) 

Fo r  the projective plane of order  n, p = q = n 2 + n + 1, k = n + 1 and 2 = n. 
Moreover ,  as for the projective plane all eigenvalues of  ArA besides the first are 
equal  to n, inequali ty (4.3) is an equality, which is equivalent  to L e m m a  3.2. Fo r  
our  purposes  in this paper,  only the inequality corresponding to (4.3) was used. 
Consequently,  the p roof  in section 3 can be generalized to any analogous  coloring 
p rob lems  of uniform regular hypergraphs,  provided we have an est imate on the 
eigenvalues involved. The  well known generalized n-gons supply one possible family 
of examples.  Other  possible examples  arise f rom higher dimensional  projective 
geometries PG(d, q); one can consider the hypergraph  whose vertices are the points  
of PG(d, q) and whose edges are all subspaces of  dimension r in PG(d, q), where 
l<r<d .  

Returning to projective planes, we note that  it seems that  both  our  upper  and 
lower bounds  are not  tight. We conclude the paper  with the following conjecture. 

Conjecture 4.1. For all sufficiently large n 

6 < Z(Pn) < 7 

for every projective plane of order n. 

References 

1. Alon, N.: Eigenvalues, geometric expanders, sorting in rounds and Ramsey theory. Combi- 
natorica 6, 207-219 (1986) 

2. Bollob~ts, B.: Random Graphs. London: Academic Press 1985 
3. Csima, J., Fiiredi, Z.: Colouring finite incidence structures. Graphs and Combinatorics 2, 

339-346 (1986) 
4. Erd6s, P., Lovfisz, L.: Problems and results on 3-chromatic hypergraphs and some related 

questions. In: Infinite and Finite sets (A. Hajnal et al. eds.) pp. 609-628. Amsterdam: North 
Holland 1975 

5. Erd6s, P., Silverman, R., Stein, A.: Intersection properties of families containing sets of nearly 
the same size. Ars Comb. 15, 247-253 (1983) 

6. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. pp. 79-80. New York: Wiley- 
Interscience, 1980 

Received: May 11, 1988 


